

Institute of Chemical Engineering

Adres artykułu: <https://iich.gliwice.pl/en/article/impact-of-the-heat-capacity-of-adsorbed-phase-on-process-performance-in-the-capture-of-co2-from-flue-gas-using-pressure-swing-adsorption>

Impact of the heat capacity of adsorbed phase on process performance in the capture of CO₂ from flue gas using pressure swing adsorption

Publication date:	29.12.2016
Publication title:	Impact of the heat capacity of adsorbed phase on process performance in the capture of CO₂ from flue gas using pressure swing adsorption
Authors:	Marek Tańczyk , Manfred Jaschik , Krzysztof Warmuziński
Journal information:	Prace Naukowe Instytutu Inżynierii Chemicznej Polskiej Akademii Nauk
Tags:	pressure swing adsorption , carbon dioxide abatement , flue gas , specific heat of adsorbed phase , critical temperature

Abstract: The present study aims at demonstrating how important it is to include the substantial increase in CO₂ heat capacity around the critical temperature in the modelling of relevant PSA separations. It is shown that this parameter may considerably alter simulation results, especially in the cases when the adsorbed phase concentration is high, regeneration pressure is moderate and CO₂ content in the enriched stream is large.

Attachments:

[Zeszyt-20-2016](#) pdf, 4.77 MB

Created at:	04.08.2025
Published by:	Artur Wojdyła
Published at:	05.08.2025 08:19
Number of downloads:	268

Tagi: pressure swing adsorption, carbon dioxide abatement, flue gas, specific heat of adsorbed phase, critical temperature

Metryczka

Published by:	Artur Wojdyła
Published at:	18.09.2025 13:16
Number of views:	68